Practical aspects of gene regulatory inference via conditional inference forests from expression data.

نویسندگان

  • Kyrylo Bessonov
  • Kristel Van Steen
چکیده

Gene regulatory network (GRN) inference is an active area of research that facilitates understanding the complex interplays between biological molecules. We propose a novel framework to create such GRNs, based on Conditional Inference Forests (CIFs) as proposed by Strobl et al. Our framework consists of using ensembles of Conditional Inference Trees (CITs) and selecting an appropriate aggregation scheme for variant selection prior to network construction. We show on synthetic microarray data that taking the original implementation of CIFs with conditional permutation scheme (CIFcond ) may lead to improved performance compared to Breiman's implementation of Random Forests (RF). Among all newly introduced CIF-based methods and five network scenarios obtained from the DREAM4 challenge, CIFcond performed best. Networks derived from well-tuned CIFs, obtained by simply averaging P-values over tree ensembles (CIFmean ) are particularly attractive, because they combine adequate performance with computational efficiency. Moreover, thresholds for variable selection are based on significance levels for P-values and, hence, do not need to be tuned. From a practical point of view, our extensive simulations show the potential advantages of CIFmean -based methods. Although more work is needed to improve on speed, especially when fully exploiting the advantages of CITs in the context of heterogeneous and correlated data, we have shown that CIF methodology can be flexibly inserted in a framework to infer biological interactions. Notably, we confirmed biologically relevant interaction between IL2RA and FOXP1, linked to the IL-2 signaling pathway and to type 1 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach

Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...

متن کامل

Improving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach

Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...

متن کامل

Inferring Regulatory Networks from Expression Data Using Tree-Based Methods

One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In th...

متن کامل

Gene regulatory network inference from perturbed time-series expression data via ordered dynamical expansion of non-steady state actors.

The reconstruction of gene regulatory networks from gene expression data has been the subject of intense research activity. A variety of models and methods have been developed to address different aspects of this important problem. However, these techniques are narrowly focused on particular biological and experimental platforms, and require experimental data that are typically unavailable and ...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetic epidemiology

دوره 40 8  شماره 

صفحات  -

تاریخ انتشار 2016